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THEORETICAL PRESSURE DISTRIBUTIONS FOR SOME SLENDER
, WING-BODY COMBINATIONS AT ZERO LIFT

By Paul F. Byrd

SUMMARY

Pressure distributions are calculated for some symmetrical wing-body
combinations at zero 1lift. The theory of the calculations is based on
the assumption of extremely slender wings and bodies and ylelds results
for both subsonic and supersonic speeds. The examples considered are
swept wings of constant chord mounted on bodies of nearly cylindrical
form.

0f particular interest is the effect of indenting the body on the
distribution of pressure over the wing. When the indentation is such as
to maintain a constant total area of the cross sections normal to the
stream, the theoretical pressure disturbances remain small throughout the
transonic range. With such indentation the isobars tend to remain smooth
and nearly paraellel to the sweep of the wing surface.

INTRODUCTION

In several papers, important extensions to the Munk-Jones slender-
body theory (refs. 1 and 2) for lifting wings and bodies have been made
to include the theoretical effects of thickness on the aerodynamics of
wings and wing-body combinations. Ward (ref. 3), solving the linearized
differential equation for the perturbation velocity potential by opera-
tional methods, and employing asymptotic expansion of the solution,
investigated the flow around bodles of general cross section at supersonic
flight speeds. By a different procedure, similar results for a wing,
body, or wing-body combination at subsonic speeds have been developed
by Heaslet and Lomax (refs. 4 and 5). An analysis for subsonic flow was
also carried out independently by Adams and Sears (ref. 6) who, 'in addi-
tion, made an extension for not-so-slender wings. Confining themselves
to wings at zero angle of attack, Keune (ref. 7) and Oswatitsch and Keune
(ref. 8) have recently obtained a slender-body theory that is slightly
different from those of references 4, 5, and 6. In a more recent report,

Isupersedes NACA RM AS4JOT by Paul F. Byrd, 1954.
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Harder and Klunker (ref. 9) have applied the basic ideas of the slender-
body approximetion to the nonlinear transonic equation for the velocity
potential.

The principal object of the present investigation is to apply the
general method of reference 4 in calculating the pressure distribution
for some special cases of nonlifting slender wing-body combinations in
subsonic and supersonic flow. The wing of the combinations is swept back
and has a symmetrical section with rounded leading edges. Determination
is made of the pressure for the wing alone and for cases when the wing is
mounted on & circular cylinder or combined with & body indented such that
the axial variation of cross-sectional area of the combination is constant.
The effects of Mach npumber and sweep angle are included in the results
presented.

LIST OF IMPORTANT SYMBOLS

bo value of x at which so = s(x)
Co root chord
Cp pressure coefficient, %%E
o]
Eb pressﬁre coefficient on indented wing-body combination
lo over-all length of the wing
m slope of wing leading edge (See sketch (f).)
M free-stream Mach number
T polar distance in ¥,z plane (W)
Re real part of & complex quantity
Ro radius of cylindrical portion of body
R(x) radius of indented body of revolution

sen(x-g) sign of (x-¢)
50 maximum value of s(x)
s(x) local semispan

S(x) local cross-sectional area of wing alone
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't(x) spanwise distance from x axis to wing trailing edge

u perturbation velocity in the x direction

Uo velocity of free stream

v perturbation velocity ;n the y direction

vy radial component of velocity in yz plane

W perturbation velocity in the 2z direction

X,¥, % Cartesian coordinates (x downstream, y to starboard, z
upward)

B M2 - 1]

2] polar angle in yz plane

Ax,¥) slope of wing surface in x direction

P perturbation velocity potential

P part of potential satisfying Pyy + Pzz = 0

4 complex variable (y + iz)

€. complex variasble (y1 + izi1)

T constant related to T,

To maximum thickness of wing section

Subscripts

B body

1 lower surface of the wing (z = O plane)

sub subsonic

sup supersonic

u upper surface of the wing (z = O plane)

W wing
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ANALYSTS

The thickness distribution of a symmetrical-wing is prescribed.
Under the restriction that the thickness is small and that the configura-
tion is slender, formulas to be applied later (see "Applications" section)
will now be briefly presented for determining the pressure coefficients
for particular nonlifting wing-body combinations. Equations are first
given for the wing without a body, and are then modified for cases when
the wing is mounted on a circulaer cylinder or on an indented body of
revolution.

Nonlifting Wing Alone

The differential equation and boundary conditions.-~ Expressed in
terms of the perturbation potential @(x,y,z), the basic linearized par-
tial differential equation for subsonic as well as supersonic flow is the
familiar Prandtl-Glauert equation

(1 - Mo®) Py + @y + 9, = O (1)

where Mg 1is the free-stream Mach number. If the surface of a wing
z(x,y) is given, solutions to the differential equation must satisfy the
boundary condition that the flow is parallel to the wing surface. When
the wing is thin, it is sufficient to satisfy this requirement in the
plane 2z = 0. Analytically, the expression of the condition is

3
<§Q = wu(x,y) = Uo '523 = Uohu(x,¥) (2)
2%9=+0 *

where Uqp is the free-stream velocity and wu(x,y) is the verticel
induced velccity on the upper side of the 2z = O plane.

Velocity potential.- When the flow is supersonic, the formula for
the perturbation potential subject to the boundary condition (2) is known
to be (e.g., see ref. 10)

d ‘ x - :
o(x,7,2) = -1 2 f f w,(&,1) erccosh at an  (3)
T ox T B (v - 1)2 + 22
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where the region of integration T 1is the portion of the plan form lying
within the Mach forecone from the point X,y,z. In the case of subsonic

flow fields, the solution of the differential equation (1) may be expressed
in the form

3 -
oy,2) = - g ue [ [ walen) arestn —=EZ5 __apan ()
O B (y - )2 + 22

with T now extending over the entire plan form. These two solutions
yield the potential due to a distribution of sources of strength propor-
tional to the slope of the wing surface MNy(x,y).

2 2
- + 2
When the wing is slender, that is, if BA/?y x ﬂ)g‘ is considered
very small, further approximations to the linearized potential (3) and (4)
can be readily made. In this event, one may employ the approximate
relations

arccosh x - £ % in 2(x - £) )
BA/(y - 1) + 22 B (v - m)2 + 22
) (5)
o X - ¢  sga(x - £)1n 2x - g
arcs sgn(x -
BN (y - n)2 + 22 BN (y - 1)2 + 22

¢

where the symbol sgn(x - &) means that the sign of (x - &) is to be
taken. FA ) y

Consider now a thin pointed wing
of symmetrical section with straight y=5k) V=55(%)
or sweptforward trailing edges as is
shown in sketch (a). Use of the
relations (5) in equations (3) and (k) L
then gives the result (ref. L)

o(x,y,2) = 92(%,5,2) + g(x) (6)

1
X

Sketch (a)




6 NACA TN 36Th4

where
s(x)
P2(x,y,2) = -—f A(x,m)Inl(y - 1)2 + 2z2lay (7)
8o(x)
and
0o d ¥ 2(x - &)
g(x) = -2—-8——[ s1(8)1n === at (8a)

for supersonic flow, and

1
U d 0 : 2lx - &
g(x) = - ﬁ&- sgn(x - g)S'(g)l]l ’l——B——l dg (8b)
(o]

for subsonic flow. The function S'(x), the derivative of the cross-
sectional area of the wing in a. yz plane, is found from

a sg(x)

St(x) =2 E;J/‘ Zu(x,7)dn (9)

55(x)

It is seen from equation (6) that the slender-body approximation to
the linearized supersonic and subsonic potentials consists of two parts.
The first part (P5) in each case is independent of Mach number and is &
harmonic function in the transverse plane; that is, it satisfies the two-
dimensional Laplace equation

cpy'y' + q)zz'= 0 (lO)

The second part (g) depends on the cross-sectional area of the wing and
is a function of x and B8 only.

Inspection of equations (6) and (8) shows that the value of the
potential for a particular wing at some Mach number M; can be written
in terms of the potential given at another Mach number Mg. Thus
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N
U
qupBl = (psupso + '2_3 S'(X)ln 'g_:)'
5 (11a)
Uo Ba
qJSUbﬁl = cPE;ubBo * ox S*(x)1n Bo )

with B1 = ,/|M2 - 1| end Bo = J |MoZ - 1|. The supersonic and subsonic
potentials may also be related. If one has already found an expression

for the supersonic potential, he can then obtain the subsonic potential
by means of the equation

lo
U Bb U '
Poup = ¢sup + 5% St(x)1n Sub . Es i fgg de (11b)
0

Bsu.p

Certain symmetrical wings whose trailing edges are swept back as in
sketch (b) can also be treated by the simplified theory, provided the
chordwise variation in shape of the
cross sections is sufficiently smooth ILL
and gradual that the assumption of
two-dimensional transverse flow may
reasonably be applied. Since the T 9 acd
wing is at zero angle of attack and
the flow is symmetrical sbout the y=-s(x), y=stk)
Xy plane, the source distribution Co
M(x,y) in the plane of the wing in / l
region W between the axis and the A °
trailing edge is set equal to zero. 7 _
If the limits of integration are = 1t) WNE =)
properly edjusted, equation (6) will
then formally still apply and yield 4

expressions for the potential in the So——|
two regions 1 and 2 of the sketch. ¥

Thus for region 1, in the 2z = 0 plane,

one obtains Sketch (b)

U ]
wwp?f/ﬁmhmnﬂf—ﬂﬂm-
[e]

c

O

X
gizﬁgMMgk-m%, (x <co)  (12a)
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and in region 2

U, r8 Uy 3 Co
Psup = ?f%u(x,n)ln |y2 - 12 an - 57 57/ S1'(8)in(x - £)ag -
t 0
U 2
'2‘%% S2'(£)1n B (x - £)ae, (x 2 cg) (12b)
o
where
d 2(x) )
Spt(x) = & a;f zy(x,n)dn, 0<x=Zco
0
> (13)
s(x)
000 = b gk [ mGeman, coSx<i,

t(x)

The subsonic solution is obtained from the supersonic solution by using
equation (11b).

Pressure coefficient.- After deﬁermining the potential for a wing
from the equations in the foregoing section, the pressure on the surface
of the wing is found by differentiation. The pressure coefficient is
related to the perturbation velocities by the equation (ref. k)

T2 1 /30\*, 1 (39 2]
°p(%¥,0) [U—§U—2<g; A ) o (142)

which is an approximation to the complete Bernoulli equation consistent
with both the linearized differential equation (1) and the assumption of
slenderness. For planar problems, further simplification achieved by
neglecting the nonlinear terms (J9/dy)® and (39/dz)2 yields satisfactory
estimates for the coefficient.
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Thus

_ .2 (2@
cp(x,¥,0) = T <8x » (1kb)

where @ is obtained from equations (11b) and (12).

It should be pointed out, however, that equations (11b),  (12), and
(1%) will not furnish realistic results .for the pressures®’ for a wing in
either subsonic or supersonic flow unless certain restrictions are imposed
on the gradient of cross-sectional area and its derivative 8"(x). Con-
sider, for example, the pressure found along the line AB where regions
1 and 2 in sketch (b) join. In supersonic flow, one finds from equa-
tions (12) and (14b) that at this line there is & jump Acp in the pres-
sure coefficient given by

1l lim u 2€
Nep = ¢ -c == 0SY(cp)ln +
P P P '{ 0
1 2 T €~>0 8 r§2(co) - 32

4 [% xu(x,t)] 1n 2€} (15)

cot+e By

Wwhere

AS"(CO) = Sln(co) _ Szu(co)

and where the usual assumption that S'(0) = S*'(cy) = O has been made.
Evidently, along the line AB a logarithmic singularity will occur in
the pressure distribution in going from region 1 to region 2 if

S1™(co) # S2"(co). (The infinity would of course be higher than loga-
rithmic if AS"(cy) is singuler.) The formulas for the pressure coef-
ficients presented in this report and in reference 4 are therefore good
only for cases where the plan form and the slope of the wing surface are
sufficlently smooth so that there are no abrupt changes in either S' or
S8". (This holds true also for the formulas given in references 3, 6, and
7. The restriction on S", however, may be somewhat relaxed in employing
the slender-body theory of reference 8.)

1Although the theory may give spurious infinite pressures on certain
portions of the wing, the results obtained for the wave drag by integrat-
ing the product of pressure and surface slope over the wing may be finite
and reasongble.
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Even if there is no Jump in the pressure coefficient at the line AB,
the slope of the pressure curve may not be continuous. It can be shown,
for instance, that a singularity will occur in the slope of the curve for
the pressure coefficient in case 'S"'(co) is discontinuous.

’

Wing on a Cylindrical Body

The equations presented in the foregoing sections for the wing alone
will now be modified to y1eld formulas for calculating the pressure dis-
tribution on a combination composed of a

lLé symuetrical wing zu(x,y) = -z3(x,y)
r‘zynmn mounted on an infinite ecircular cylinder
oy =5tk Y having radius Rg(see sketch (c)). The
surface of the wing chosen here will also

be considered symmetrical about the xz
plane, but the method applies equally well
lo if this is not the case. The procedure
followed is essentially the same if the
fuselage is any body of revolution instead
of a circular cylinder.

In studying such combinations, it is

. usually convenient to introduce a second

coordinate system. Let the yz plane be
represented by a complex variable

t =y + iz = relb (16)

and then consider a Ql plane

{1 = y1 + 121 = r1eifa

obtained from the § plane by the
Joukowski transformation

Sketch (e) 52
§1=§+% (17)

The transformation (17) maps the '§ plane onto the §1 plane so
that a circle representing a section of the body in the ¢ plane is
mapped onto a portion of the real axis in the §1 plane, while the part
of the real axis outside theé circle is transformed into an adjoining part
of the real axis of the §; plane. (See sketch (c).) It can easily be
shown from the equation that the geometric relations
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R.2
Y =Y + —3_ s 718> R® -
> (18)
Y1 = 2Rgcos 6, 712 S R,
2
81 = 8 + Bg— J

hold for 2z equal to zero.

The technique employed is to transform the boundary conditions from
the ¢ plane to the Ql plane and to find a solution in the latter
plane. The solution is then transformed back to the physical plane for
the completion of the problem.

Perturbation velocity potential at the wing surface.- A consequence
of the conformal transformation is that the complex velocities in the
two planes § and {; are related by the equation

ag :
v - iwv = (Vl - in) EEI—- (19)

or, in polar coordinates (ref. 11),

I Ro\~ R\ )
v=vy|1l- - cos 20| + wq T sin 26

- 2 2

R ‘ R

w=w |1~ (-}9) cos 26} - <’1"O‘> sin 26 > (192)

L.

Ro Z Ro 2 .

= |vy cos 6 + wp s8in 6 1- /) 1+ 2w, - sin GJ

From these equations it follows that the boundary conditions in the 2z; =0
rlane are

i
|
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. 3
V- Ug(dRp/dx
Wy = I - o( o/ ) =0, y12 < R12
2 sin 6 2 gin 6
\ (20)
Wy = ——12—— ’ RZ<y®< 5121
1 -~ R2/y®

with w related to the streamwise slope of the wing surface by equa-
tion (2).

The two-dimensional solution @2 1n the §1 plane at z; = O is,
from ‘equation (T),

51

1
P (%,¥2,0) = ;L/q vi(x,m)inlyy - nufam (21)
Putting now
D9
T]l""n 'q

and using relations (18) and the boundary conditions (20), one finally
has for equation (21)

S(X) _ .2 2 _ g 4
va(x,y) = [ Amm)in G - ;iyz“ o) |4 (22)
Ro n

If one of the functions g given by formulas (8) is then added to this
equation for @5, the velocity potential on the wing may be obtained for
elther supersonic or subsonic flow. Thus, for the supersonic perturbation
potential on the upper surface, there results :

s(x) 2\ 2 2
Ef %u(x,n)lﬁ, (v% - 1®)(¥*n® - Ro*) o -

Pgup = 202
Ro
x .
Uo 3 [ sr(t)1n2 (x - ¢)at (23)
2n dx B

and for the subsonic potential
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s(x) o 2 4
- - R
Psub = Eﬁgf Au(x,1)1n l = o ;iyin o dn -
RO . T]
7’O
i"f‘[a% f sga(x - £)S'(E)n 2 Ix - tla (21)

[¢]

Pressure coefficient at the wing surface.- The pressure coefficients
on the surface of the wing of the combination are obtained by differenti-
ating equations (23) and (24) with respect to x and then employing
relation® (14b). Thus

) (7 - 1) (P - BY

2 9
®Pgup = T T —f Ay(x,1)1n 3 dn +
ox Ro ¥2n
iéz_fxs'(g)lng (x - £)at (252)
T %2 B
L ‘ ,
and.
s(x)
e 6 e e
“Psub ~ X 3g ut®n/5n y°n2 dn +
) Ro.
)
-}?f S@(X-E)S'(E)ln%[x -t|ag (25Db)
0 -
or, with the aid of ‘equation (11b),
Z
1 i Bsub _ 1 S'(é)
®Pub = Peup "% ° (¥)1n Bsup 2% ox [ . (26)

2As in the case of planar problems, the squared terms in the pres-
sure relation can be neglected in considering a com'bination whose body
is a circular cylinder. (See ref. k4.)

1}
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The coefficient for a particular wing at some Mach number M;, written
in terms of the coefficient at another Mach number Mg, iB

_ L Bo
cpsup B cpsup T % 8%(x)1n Bi (2Ta)
Bx Bo
and
= ¢, + s"(x)1n Eg (270o)
CPsu.bBl subg Bl B1

where By = o [Ma2 - 1] and Bo = & M2 - 1.

Tt should be noted that formulas (25a) and (25b) are not uniformly
valid for all values of Rg. If the radius Ro 1is equal to zero, the
- equations. reduce immedisately to those
léé ) glven previously for the wing without
- & body. As the radius approaches
infinity, however, one finds that for-
r\“m’ mulas (25a) and (25b) yield a value of
the pressure coefficient that differ
O +y from the results for the wing alone by

1t
-y=s(x) a term equal to §—§§l 1n %-~ Employing

/ =1fx) the equations for values of Ry that
------ y b are large violates the assumption of
2 b slenderness according to the approximate
theory used herein.

When the wing mounted on the com-
SH5—— bination is swept back, as shown in
sketch (d), the slope Ay(x,7n) is taken
equal to zero in the gap between the

D
trailing edge and the body. The for-
M mulas obtained in regions 1, 2, and 3
for the supersonic pressure coefficient
Sketch (d) on the upper surface of the wing are
then as follows: ’
Region 1:
s(x) > > 4
23 [ o] G SR S
cPl T dx UL N

2

762 X ) o) .
1 _5;2_.0, S17(8)1n 5 (x - £)ag, ~ (0 < x < co)

oy

~ . -
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Region 2 )
s(x
_ a2 2 _ gt
CP2=_§%f Ay(x,7)1n (v” Tl;éqyzn o) an +
t(x)
122 [° | 2 ¥ 2
;{S—xg[ Slt(é)ln(x-ﬁ)déf;;?z; szt(g);ng(x_g)dg

(co £ x<bg) (28b)

Region 3:
50 y2 _ 2) 2 _ g 4
e = - & ga; f Aa(xmin |20 yz(? = an +
t(x)
132 [0 1 9% o
'J? 'a—x—z Sl‘(é)ln(x - g)dg + a 3;2 sz"(g)ln(x,— §)d§ +
o] Co
- x ,
1 | ,
LS [orenmn 2 x- 02, (bo<x<10) (28¢)

by

where bo 1is the value of x at which sg = s(x). Use of the relation
(26) in conjunction with the above three formulas will furnish equations
for the pressure coefficient in subsonic flow in the various regions.

Wing on an Indented Body

In the previous formulas for the pressure distribution attributable
to thickness, the coefficient becomes infinite® when the Mach number o

approaches unity because the formulas contain a term involving S?'(x)1n 5
It is thus possible to construct slender configurations which will give

a8 theoretically finite pressure coefficient even at the speed of sound.
Under the assumptions of slender-body theory, this may be achieved if the
gradient of cross-sectional area of the configuration in a yz plane
vanishes identically. Combinations constructed in this manner on an

aThis of course is not a property of slender-body theory alone.
Except in particular cases, Steady-state linearized theory also in general
yields infinite pressures at f = O.
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infinitely long fuselage are slightly indented in the vicinity of the
wing and possess, according to the theory, the_important property of
having zero wave drag.

Velocity potential at the wing surface.- Let the surface

zu(x,Y) = -zz(x,Y) of a symmetrical wing be specified and assume that
the indented fuselage is a body of revolution which deviates slightly
from a bagic circular cylinder of radius R,. The cross-sectional area
S(x) of the exposed wing is then given by

lLé

(x)
S(x) = 4 z,,(x,7)dn (29)
R(x)
-y=5(x) where R 1s the radius of the indented
: body. (See sketch (e).) In order for
-L the streamwise gradient of cross-

sectional area of the entire combine-
tion to be zero, the relation

-y=Filx) '
7R3(x) = nR,2 - S(x), S(x) < < nRZ
(302)
X
Sketch (e)
or
R 5 = -81(x) (30b) °

ax

must hold. Since the quantity S(x) is known from formula (29), equa-
tion (30a) can thus be solved for the radius R of the body.

Now the perturbation potential in the §; plane at 23 = O has the
form

1
95(%,71,0) = ;;f v (xm)in [y - m | dm (312)
-Sl ’
or
- _ v o ,
?(%,¥1,0) = %]ﬁr w1 (x,m1) 1nlyr - mafdny + ,%‘L/1 w1 (x,m) 1nly12 - na2an

T1 L (31b)
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with
R RZ
+ 5

8y =8 s Y1=y+_y—:' I‘1=2R (32)

The term corresponding tb6 the g(x) of equations (8), which is to be added
to this @5, is zero since there is no change in the cross-sectional area
of the specified shape of the yz plane.

From the last relation in equation (19a) it follows (upon putting R
in place of Rg) that in the interval m12 < r12 +the boundary condition
may be expressed

vy _ (ar/ax)Uu, ) .
_QSine_eJl_(anrl)z’ r=R (33)

W

For very thin wings, and for deviation Rp - R of the same order as the
wing thickness, the condition in the intervel r;2% < M;% < 8,2 is approxi-

mately
= W _ Ub(azu/ax)
1 - R2/M® 1 - RE/1°

(34)

Lkl

Meking use of equation (33), one can then write the first term on
the right in equation (31b) as

Iy
1 dR 2 .
;ff wl(x:nl)ln Iyl - Tllldnl = U ax In Yy, y2 2R (35)

where, from equation (3db), the quantity R(dR/dx) way be replaced by
-1/2x times the gradient of cross sectional area S'(x) of the wing.
In the second integral in equation (31b), set

R2
= + —
o=+

and use relations (3%). The final form for the velocity potential at the
upper surface of the wing thus becomes

Uy
?(x,y,0) = - ox S'(x)Iny +
U (¥ - @) (¥*n® - RY)

R
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Formilae (36) for the velocity potential for a slender combination
whose body is indented according to the area rule (ref. 12) is evidently
independent of Mach number and therefore holds (within the assumptions
of the simplified theory) for subsonic, transonic, and supersonic speeds.
If the limits of integration are adjusted, the equation may also be used
for combinstions with sweptback wings.

Pressure coefficient at the wing surface.- On the surface of the wing
the pressure coefficient can be found from relation (1lle), that is,

_ [2.39. 1 B_<P>2] i %.1)2 7
cPw__[UoB_iJquz o/ o \ox (57

where the potential ¢ is obtained from equation (36).

APPLICATTONS

The formulas which were given the preceeding part of this report will
now be epplied for the purpose of performing detailed calculations of the
pressure distribution for some particular nonlifting combinations having
a syumetrical wing with constant chord.

Wing Mounted on a Body of Cilrcular Cross Section

Pressure coefficient on the surface of the wing.- The wing of the
combination%* considered here is mounted on a circular cylinder and has
an upper surface defined by

zu(x,¥) = T(con - 8 + yYWN(s - y)(com - & + ¥) (38)

with
8 = WX + RO
zu(%,¥) = zu(x,-¥) = -29(x,¥y) = -z3(x,-y)
and
8To
T=— (39)
3‘[112(:02\/3—

“This combination will be referred to as the basic combination.
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the constant Ty being the maximm thickness. The profile resembles a
Joukowski section and is the same for all values of ¥. On the starboard
side of the wing, the slope of the surface is given by the relation

Oz, v, (%,7)  mr colt ~ 8 + ¥
g=7\u(x,b’) =~ g, "% (com - bs + ky) sy (ko)

From this equation it is seen that the slope possesses a square-root
infinity at the leading edge and is zero at the trailing edge.

The gradient of cross-sectional area of the wing is

S1'(x) = lV"ma'(co = X)VX(CO -x) = 4o zu(x,Ro): (0 £ x < co) (k1a)

in region 1 in sketch (f) and is
Sz2'(x) = 0, co £ x <'(86 - Ry)/m (41b)
in region 2; for region 3,

Sa'(x) = -km z,(x,8,), (86 " Ro)/m<x< (85 - Ry + com) /m

(41b)
Since 8" 1is not continuous across lUc
the line AB, the approximate theory
employed here will give unrealistic
results in the regions of the tips.
In calculeting the pressures for the 0 ey

wing-body cowbination, attention will
therefore be confined to regions 1
and 2 only. The calculations to be
given in subsonic flow will be based
on the assumption that the tips are
located far downstream and have no 2
effect on the other two regions.

| N e

—o—
m

-V =MX+Fy-Coin

ANX-----3F
Use of the equations (40) and 3
(41) in formulas (282) and (28b) yields
the following final results for the So
supersonic pressure coefficient on the __tam \j
upper surface of the wing for regions R
1 and 2: | e ,
X

-
_?10 E_— F el

Sketch (F)
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Region 1:

[co - 8xy(cqy - %)
_ weT -1 / x Co - X o
cPsup == [16Rota.n Py— + 2m(co - bx) X in Bco(y2 ~ Roz) +
R02>]
y- 2

(0 £x < cp) (k2a)

F(x,y) + F(x,-y) - 2F(x,0) + F(x,R—§-2>+ F<x, -

Region 2:

,x—c [s - com
(:PSU.P=mar [8Ro+2m(l"x'°o) X O"'2(}"'3’(:0“1) BO +
8 - cot + ¥ Ro2\ [s- com- Ro2/y
(com-hs-ll-y)/———-s—%—y——+<com-hs+l+ ;)/ s?RO?-‘/y/ +
Ro 8 - col + Ro2/y
(com-hs-h y2>/ 5 + Ro2/y J

(co<x%x, B-com<y<x; 8 =mx+Rg)

(4ab)
where
E(x,n) = (com - ks - hn)js—-Tc_jn__ﬁﬂ
2 2Nx(c, - x)(8 + 1)(8 - com + 1) |
vhen cm -~ 8 - 1 <0, and

Coll — 8 - 1]
F(x;n) = (com - 48 - k) —o-'m-

co{n + Rg)

In

(co - x)(28 + M) - (1% + Roco) +x(co - x)(8 + n)(com - &8 - M)
| (43b)

when com -8 - 1 >0
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It is seen from equation (26) that the formulas for the pressure
coefficient in subsonic flow can be obtained by adding two terms to the
above equations for the supersonic pressure coefficient. Since the value
of 8! 1in region 2 is identically zero, the terms to be added for region

1 become
Co
19
T 2 x
o
and for region 2

—l-aa‘/‘g'—(g—)-dg='rm3ELx-3co+(co-hx) %—cgil, (x 2 co)

= o3 [kx - 3col, (x £ ¢cp) (4ha)

x - &

(ko)

The subsonic pressure coefficient on the upper surface of the wing can
therefore be written in region 1 as

n3r [co - X Bsub
cpsub = Cpoup +— [n(hx - 3c0) + 2(kx - cp) —— 1n Bsup] (45a)

and in region 2 as

cp + m?T[hx - 3¢ + (cg ~ kx) EL:—EQJ (45b)

sub B Pmm
vhere cPsup is given by equations (L2).

Formulas (42) and (U45), which give the pressure coefficients on the
wing of the combination indicated in sketch (f), will be plotted and the
results discussed in a later section. An obvious result noted now is
that in region 2 the formulas do not depend on Mach nuwber for either
supersonic or subsonic flow, but that the subsonic coefficient in this
region is always greater than the supersonic coefficient because the
inequality

mﬁT[hx - 3¢ + (co - bx) E_:_EQ] >0 \ (46)

X

holds for all values x = cg-
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As a check, let us now consider. the asymptotic behavior of equa-
tions (38), (k2b), and (45b) far outboard along the wing. For this pur-
pose, we Introduce a change in coordinate system by means of the trans-
formation -

X = Xpsin 0 + ynsin 6
(472)
Y - Rp = -xpcos 6 + ypsin g
Us
l (See sketch (g).) Setting tan 6 = w,
<t one can then write
' x = IxXp + ¥yn A
: S 7 Ji+me
/ / A Elyn - Xn
/ b Yy -Ro=——
A S " N
Xn Cn
>(470)
2 x, = mx - (y-Ro)
N1 + m2
| ' _ x + m(y - Rg)
1At 7 | R
x
Sketch (g)
S
and
Cp = Coll 1+ m2
My = wNT + 2
) e
Uy = UgaA1 + w2
Bp = IN1 + m2 )
Equation (38) thus becomes
8T 3/2 1/2
(xn) ’

2, = —=— (cn - %n)
3 \/—B-cnz
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which agrees with the approximate equation employed in two-dimensional
gection theory for a thin Joukowski base profile of thickness ratio

— T . (See ref. 13.) The pressure coefficient for such a two-
3 3e,
dimensional airfoil is

.22 % [, ’in] )
%p Up oxy 3 ’J-3-Cn B [3 <“‘n> (49a)

or, written in terms of the xy systen,

_ 819

cp = 3J_c [3com - ¥(mx - y + Ry)] (49p)
o .

This equation is in agreement with the asymptotic expression of the pres~
sure coefficient for region 2 obtained far outboard along the wing from
either equation (42b) or (45b).

Pressure coefficient on the body.- The formule for determining the
pressure coefficient on the surface of the body is (ref. k)

o m o (B)]- @) (50e).

When the body is a circular cylinder, this relation reduces to

oy -~ () (500)

It is apparent that application of equation (50b) requires a knowledge
of the value of the potential ¢ in space, so that formulas (28), which
hold for z = 0, must be "analytically continued." One way that will in
effect accouwplish this is as follows:

Set

and form the function
o(x,8,0) = q?(x:ggo) + i‘ll:’(x,g,O_) . (51)
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where o(x,t,0) is teken from equations (23) and (24), with the function
¥ defined by>

8(x)
TP’(X,C,O) =f Wu(x,fl)dﬂ (52)
¢

The constructed function (51) will obviously satisfy laplace's equation
in the yz plane; and it can be verified without difficulty that the
boundary condition vy = O is also satisfied. The coefficient on the
body can then be calculated from the formila

cp = - = Re a—q’> | (53)

where the symbol Re means that the real part is to be taken.

For region 1, the final result obtained for the pressure coefficlent
on the body in supersonic flow for the basic combination considered in
this part of the report is

- i6
cpsup = Ez_ﬂl 16R, tan™* ,E;‘X-“;E - 2F(x,0) + F(x,Rge” ) +

F(x,Roe_le) + F(x,-Roeie) + F(x,—Roe_le)

8x(ec x)eie
Re | 2m(cqy - hx).[co = X 1n o -

Bco(eaie - )R,

+

com ~ 8 + Roele

o - Ryell

(x < cp)

in(com - 4s + hRoeie)J/
(5ha)

where the function F(x,7) is given by equations (43). The result found
for the supersonic pressure coefficient in region 2 can be put in the form

SAn arbitrary real function E(x) may, in general, be added to the
right side of equation (52). Such a function, however, would in no way
affect the real part of O0/dx, since iE is purely imeginary.
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/x -c /S - Coll
cpsup = m2T 8RO + 21!1()-!-}{ - Co) -_x'g + 2(""8 - Com) _B_ +

ig, [8 + Roeie - cpom
(com - 48 - 4Rpe ") 5 +
s + Rge

~ie
- 8 + Rpe - cal
(com - Us - 4Rge iQ)J/ o _190 +
' s + Rge

B - Roei6 - comn
ie

(com - bs + hRoeie)

8 - Roe

o]

- R.e~16 _
(com = ks + hRoe’ie)J/; ot o s (x > co) (5¥b)

- ~ig
8 Roe

Corresponding formulas for the pressure coefficient on the body in sub-
sonic flow are obtalned from the above two equations by adding to them
the terms on the right of equations (44a) and (44b), respectively. For
any fixed value of y in region 2, relations (45b) and (46) furnish the
inequality

®peub > CPsup (55)
wvhich, as mentioned before, is also true for the coefficients on the wing.
Wing Mounted on an Indented Body

The constant-chord wing whose thickness distribution on the starboard
side is given by ’

2,(%,7) = T(cou - 8 + Y)N (8 - cgm - 8 +7), Rx) Sy<s
8 = mx + Ry (56)
T = 8'To

) 3mPco? J§
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will now be combined with an indented body of revolution which deviates
slightly from a basic cylinder in the manner that makes the local cross-
sectional area of the configuration
1(& a constant, The wing has the same
proflle along EE as the one in the
previous example. (See sketch (h).)

Since the gradient of cross-sectional
area of the combination is set equal
o —y to zero, the wave drag, according to
-T ] y=mx+ R, the slender-body theory, is also zero.
Goh 1 The cross-sectional area of the
J_ ! £ wing in region 2 is equal to the con-

stant
8
5,(x) = I fzu(x,n)dn = Eﬁ'?f (57)

s-com

and the radius of the indented body
z in this region is therefore the con~-
stant

) co%uS
o BT
| (58)

Corresponding equations for region 1 are

L
2
: _

Sketeh (h)

s .
-1 Coll - 28 + 2R1

Sl(x) = ll'fzu(x:ﬂ)d"l = é’ {3]113603(305 com +

Ry

2l2(5 - Ra) (Tegm - bo + 4a) - 321/ (3 = Fa) (eom - & + R)|(59)

Rl(x)=Ro/1-%c(-;—)—; 0 <Rz SRy <R (60)

and
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Equation (60), however, does not give an explicit value of the radius
in region 1 because the function S, itself involves R,. Moreover,
the function S; 1is a transcendental function of R;, so that equa-~
tion (60) can only be solved by graphical or other methods of approxima-
tion. By means of the mean-value theorem, we can write the equation in
the form

81(x) = 811(x) + 4zy(x,d) (Ro - Ry) (61)

where d 18 a certain value in the interval Ry <d < Ro, and

S11(x) = %321- [2(lltxco - 8 - 3co2)w x(co - x) + 3cyScos™ —CQC—;—EX—:’ (62)

is the cross-sectional area of the wing in region 1 neglecting the addi-
tional area exposed by the indentation. Since the deviation Rg - Ry 1s
assumed to be of the same order as the wing thickness, neglect of the
term bz (x,d)(Ro - Ry) will evidently introduce only an error of the
second order in thickness. TFor very thin wings, the radius R; way thus
be epproximasted by .

— R ——
Ry(x) = Bo [1 - —fm%.;:— (63) ,

which is now an explicit function
of x. 5

Sketch (1) indicates the varia-
tion of the radius as a function of _A_
x/eco for To/meo equal to 0.1 and Go/7
values of Ro/mco equal to 0.5 and
1.0. 0

o 5 0 5 20 25 30

Relations (14b) and (53) can be X/
imediately employed for determining °
the pressure coefficient on the sur-
face of the wing and on the body in Sketch (1)

region 2, because the portion of the body in that region is a circular
cylinder. Use of these relations with equation (36), (57), and (58), then

finally yields for the coefficient on the upper surface of the wing

8 =~ cpl -
e‘_p = mETEE(lI-B - 3com) + 2(4s - com) ’..__S.O + (com ~ks - by) ’B _—sc'-?-m;y +

2
m -k +)-I-R2 /g-cdm"Rzz/y+ (c m-hs-uR22>~/B'°0m+322737
So s Y /N 8 - RE[y °© ¥ s + R2/y

(s - com<y<s) (64)
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and for the coefficient on the body

8 -comnfRZeie

'c!p2=m2'r 2(4s ~ 3com) +2(ks - cqm) S—-—SEQE +(com-bs - theie)J

S-Raeie
' -1 16
-i6,-/ 8 -cm+Roe ) 16, [ 8 ~cou -Rpe
(cm- ks ~ 4R e / Q 2 +(cqm = ks + kRoe /*- +
o™t 2 ) s'-Rze‘ie ( © 2 ) s-—Reeie
-ie
-4 B - ol - Rye
(com- ks + kRge 19)/ - FRoo-10 (65)

These equations are employed for

> RO+ ROZ-COamT
X=C @ w2 n

the equelity sign giving the value of x at the trailing-edge fuselage
junction. The two formulas do not involve Mach number and apply for sub-
sonic, transonic, and supersonic flight speeds. Camparison of formula
(64) with equations (42b) and (45b) shows that for a fixed y in region 2
the inequality

ﬂc'p > cpsu'b > cpSle (66)

is satisfied when x 2 cg. Values calculated in region 2 for the subsonic
and supersonic pressure coefficients along a section on the surface of the
wing of the basic combination will thus be less than the values obtained
for the coefficient 'E:'p on the wing surface of the indented combination.

In region 1, the body is not cylindrical but it is found that the
squared terms in the pressure relation (37) may be neglected since they
contribute only quantities involving the second and higher order in wing

29
thickness that are small in comparison with - TN -a% . Even the first
: 0

term in relation (37) gives rise, for the particular combination consid-
ered, to some small terms of the second order. Such quantities, however,
are also found to be negligible. The formulas to be presented here for

the pressure coefficients in region 1 will therefore contain (like those
for region 2) only terms of the same order es the thickness of the wing.



Use of equations (14v), (36), (53), (59), and (60) thus furnish the following final expres-
sions for the pressure coefficients on the wing surface and on the body in region 1 of the combina-
tion in sketch (h):

Coll =~ 8 +R, ¥y2 = - g (s -Rl)(co'ﬂl-B"'Rl) +

~ ey
p =_—[2(m°o‘l*s+l‘ﬂl) 5 ~Ry ¥*-Ry

1 7

R 2
-1 B "Bl 1 ( R
- [ ———% :F + ~y) - 0) + —)+F g
4(hg ' 3com) tan B -5 +Fa +F3(x,y) +Fi(x,~y) -~ 2F1(x,0) +F, <X, y2> LA\F Ty (67)
and .
&, = ET -if__8-B el 4 -18y _
°p, = -84 (e -Ry)(com=8 +Ry) +L4(hs - 3c,m)tan Py—— + Fi(x,Rie™”) +F1(x,Rie” ")
ig 16 ; [con-8+R,y 216
2F1(x,0) + F1(x,-R1e™Y) + F1(x,-R1e™1%) +Re|2(con - 46 + l.LRl)J STHL 1n )
16, | Coll = B +Rleie"| 1 (68
in{cam= 48+ 4Rie™7) —T3 )

where for com-g+4+17 >0

lnL meo{n = Ry) ] (69)
8(com-8) + (28 = com) (N +Ry) - 2Ry + 2+ (B =1) (cqmu=8+1)(8=Ry){com - 8 +Ry)

and for com-8+1n <O

B-coli-1 | x -1 e8{com-8) + (28 - com){N +Ry) - 2UR, . {70)
= (com=ba+b) [22OBIN Ly
Fa(ae,n) = (eom = ba + b)) ~5—— | 5~ tem 2y (e -n)(e - cou-1)(e -Ry)(com=5+Ry)

#,9€ NI VOVN

62
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NUMERICAL RESULTS AND DISCUSSION

" Graphs of the pressure coefficients for a wing alone and for the
two wing-body combinations in sketches (f) and (h) are shown in figures 1,
2, and 3. Figures 1 and 2 give plots for the coefficients along several
spanwise stations of the basic combination (Rg/com = 0.5) for subsonic
and supersonic flow at mp = 0.5, while figure 3 presents plots of the
coefficient for the indented wing-body combination which are independent
of Mach nuwmber. The plot in figure 4 gives the variation of the pressure
on the body in the plane of the wing.

Figures 1 and 2 show that, except at the wing-fuselage juncture, the
pressure coefficients have a finite negative® value at the leading edge’
and increase to finite positive values at the trailing edge. On sections
which are cut by the plane x = co (i.e., passing through the trailing-
edge fuselage juncture) the slopes of the curves are discontinuous. It
is also apparent that the effect of the presence of the body on the coef-
ficient does not extend very far downstream beyond the trailing-edge
fuselage juncture; the difference between the calculations for the wing
on the combination and those for the wing alone, for instance, are too
small to show up in the plots for sections more than one chord length
from the body.

In figure 3, the pressure coefficients for nearly all sections on the
wing of the indented combination are very close to the curve for the two-
dimensional wing. The discontinuity in the slope of the curve that was
quite noticeable along sections such as BB of figures 1 and 2 is far less
apparent in figure 3.

The greph in figure 5 is the function which, according to equa-
tione (27), can be added to the values given in figures 1 and 2 for the
subsonic or supersonic pressure coefficient along the section AA and BB
of the wing to yield values of the coefficient at other Mach numbers.
(Sections CC, DD, and EE lie in region 2 where the coefficients do not

depend on Mach number.) For example, the pressure —P _ at the

. (To/colm

leading edge along BB in subsonic flow for mg = 0.4 is, using figures 1
and 5 in conjunction with equatioms (27), -4.1 -0.2 = -ﬂ.3.

Figure 6 shows isobaric charts of the pressure coefficients for the
wing without body in subsonic and supersonic flow at wf = 0.5, and also
6 The occurrence of a negative pressure at the nose of a Joukowski-
like section is the result of the thin-airfoil simplification. A more
accurate theory would show a small region of positive pressure (i.e.,
a stagnation point with the maximum value equal to the impact pressure
of the component of stream velocity normal to the edge).
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a chart giving the two-dimensional results. The figures 6(a) and 6(b)
indicate that the pattern of the isobars in the‘region behind the trailing-
edge fuselage juncture is essentially the same as the two-dimensional in
figure 6(c), but that in the region near and upstream of the juncture, a
marked deviation from the straight iscobars of the two-dimensional case is
evident.

Isobaric maps are also shown in figure T for the basic wing-body
combination in subsonic and supersonic flow, and for the indented wing-
body comwbination. Figures 7(e) and 7(b) illustrate that in the region .
dovnstream from the trailing-edge fuselage juncture (even near the Jjuncture
itself) the isobars are not much different from those for the wing alone,
and that the body therefore has little effect in this region. In the
region adjacent to the body, the pattern of the isobars is qualitatively
similar to the case for the wing alone but the pressures are lower. A
remarksble difference between the chart in figure 7(c) for the indented
combination and those in figures T(a) and 7(b) for the basic combination
is that the isobaric pattern on the wing for the indented combination is
essentially two-dimensional over practically the whole wing.

Examination of the three charts in figure 7 also indicate that the
maximim negative pressure on the wing occurs at the leading edge near the
boundary between regions 1 and 2. In fact, it can be shown that the max-
immm occurs at the boundary. In view of the inequality (66), indentation
in accordance with the area rule reduces the maximum perturbation veloci-
ties on the wing.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 7, 1954
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Figure 1l.- Subsonic pressure coefficient on upper surface of wing of the
basic combination; mB = 0.5.
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(a) For use with section AA of figures 1 and 2.

Figure 5.~ Functlion to be added to glve values of pressure coeificlent for other Mach numbers.
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Figure T.- Isobaric charts for wing-body combinations; m3 = 0.5.
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